$$
\begin{align*}
\Phi_{j}^{n} & =\frac{x^{2}\left[\left(\frac{x_{j+1}^{n}-x_{j}^{n}}{v_{j+\frac{1}{2}}^{n}}\right)+\left(\frac{x_{j}^{n}-x_{j-1}^{n}}{v_{j-\frac{1}{2}}^{n}}\right)\right]}{} \tag{5.3}\\
& =\text { average mass at } j .
\end{align*}
$$

At the left boundary

$$
\begin{equation*}
\Phi_{0}^{n}=\left(\frac{1}{2}\right)\left(x_{1}^{n}-x_{0}^{n}\right) / v_{\frac{1}{2}}^{n} \tag{5.4}
\end{equation*}
$$

The new coordinate is given by:

$$
\begin{equation*}
x_{j}^{n+1}=x_{j}^{n}+u_{j}^{n+\frac{1}{2}} \Delta t \tag{5.5}
\end{equation*}
$$

2. Continuity equation:

$$
\begin{equation*}
v_{j+\frac{1}{2}}^{n+1}=v_{j+\frac{1}{2}}^{n}+\Delta t\left(\frac{\rho o}{m}\right)_{j+\frac{1}{2}}\left(u_{j+1}^{n+\frac{1}{2}}-u_{j}^{n+\frac{1}{2}}\right) \tag{5.6}
\end{equation*}
$$

where

$$
\begin{aligned}
m_{j+\frac{1}{2}} & =\rho_{j+\frac{1}{2}}^{0}\left(x_{j+1}^{0}-x_{j}^{0}\right)=\text { mass in the cell } j+\frac{1}{2} \\
\rho 0 & =\text { initial density }
\end{aligned}
$$

3. Linear viscosity:

$$
\begin{aligned}
q_{j+\frac{1}{2}}^{n+\frac{1}{2}} & =c_{L} \rho_{j+\frac{1}{2}}^{o} \eta_{j+\frac{1}{2}}^{n+\frac{1}{2}}\left|u_{j+1}^{n+\frac{1}{2}}-u_{j}^{n+\frac{1}{2}}\right| \text { for }\left\{\begin{array}{l}
u_{j+1}^{n+\frac{1}{2}} \\
v_{j+\frac{1}{2}}^{n+1}<u_{j}^{n+\frac{1}{2}}
\end{array}\right. \\
& =0 \text { otherwise. }
\end{aligned}
$$

Here

$$
\begin{equation*}
\eta_{j+\frac{1}{2}}^{n+\frac{3}{2}}=2 v_{0} /\left(v_{j+\frac{1}{2}}^{n+1}+v_{j+\frac{1}{2}}^{n}\right) \tag{5.9}
\end{equation*}
$$

4. Constitutive relations:

The relaxation equation:

$$
\begin{equation*}
\alpha_{j+\frac{1}{2}}^{\mathrm{n}+1}=\alpha_{j+\frac{1}{2}}^{\mathrm{n}}+\left(\frac{\alpha^{\mathrm{eq}}-\alpha}{\tau}\right)_{j+\frac{1}{2}}^{\mathrm{n}} \Delta \mathrm{t} \tag{5.10}
\end{equation*}
$$

τ is the characteristic relaxation time and
is assumed to be constant.
The specific volume of the first phase is:

$$
\begin{equation*}
v_{1, j+\frac{1}{2}}^{n+1}=v_{j+\frac{1}{2}}^{n+1}-\left(v_{2}-v_{1}\right) \alpha_{j+\frac{1}{2}}^{n+1} \tag{5.11}
\end{equation*}
$$

Temperature calculation:

$$
\begin{align*}
T_{j+\frac{1}{2}}^{n+1}= & T_{j+\frac{1}{2}}^{n}+[C T]_{j+\frac{1}{2}}^{n}\left(v_{j+\frac{1}{2}}^{n+v_{j+\frac{1}{2}}^{n}}\right) \\
& -\left(\frac{q}{c_{v}}\right)_{j+\frac{1}{2}}^{n+\frac{1}{2}}\left(v_{j+\frac{1}{2}}^{n+v_{j+\frac{1}{2}}^{n}}\right) \tag{5.12}
\end{align*}
$$

where $C=-\left(1 / C_{v}\right)(\partial p / \lambda T)_{v} \begin{gathered}\text { (convenient for } \\ \text { mixed phase })\end{gathered}$
or $\quad C=-\Gamma / v$ (convenient for a single phase), and Γ is the Grineisen coefficient. The value of C_{v} depends on the phase region as described in the last section. The formula for $C_{v, m}$ in a mixed phase is given in Appendix II.

Equation of state:

$$
\begin{equation*}
p_{j+\frac{1}{2}}^{n+1}=\left[p\left(v_{1}, T\right)\right]_{j+\frac{1}{2}}^{n+1} \tag{5.13}
\end{equation*}
$$

where $\mathrm{p}\left(\mathrm{v}_{1}, \mathrm{~T}\right)$ is given by Eq. (4.5).
The boundary between a single and a two-phase region is distinguished by the transition pressure P_{M}, at which the relative volume of the first phase is given by v_{A}.

